top of page

Artificial Intelligence, Computational Fluid Dynamics and Sustainability

Fri, 20 Aug

|

Zoom

By Dr Ricardo Vinuesa, Kungliga Tekniska Högskolan (KTH) , Sweden

Registration is Closed
See other events
Artificial Intelligence, Computational Fluid Dynamics and Sustainability
Artificial Intelligence, Computational Fluid Dynamics and Sustainability

Time & Location

20 Aug 2021, 15:00 – 16:00 BST

Zoom

Guests

About the Event

Biography: 

Dr. Ricardo Vinuesa is an Associate Professor at the Department of Engineering Mechanics, at KTH Royal Institute of Technology in Stockholm. He is also a Researcher at the AI Sustainability Center in Stockholm and Vice Director of the KTH Digitalization Platform. He received his PhD in Mechanical and Aerospace Engineering from the Illinois Institute of Technology in Chicago. His research combines numerical simulations and data-driven methods to understand and model complex wall-bounded turbulent flows, such as the boundary layers developing around wings, obstacles, or the flow through ducted geometries. Dr. Vinuesa’s research is funded by the Swedish Research Council (VR) and the Swedish e-Science Research Centre (SeRC). He has also received the Göran Gustafsson Award for Young Researchers.

Abstract: 

The advent of new powerful deep neural networks (DNNs) has fostered their application in a wide range of research areas, including more recently in fluid mechanics. In this presentation, we will cover some of the fundamentals of deep learning applied to computational fluid dynamics (CFD). Furthermore, we explore the capabilities of DNNs to perform various predictions in turbulent flows: we will use convolutional neural networks (CNNs) for non-intrusive sensing, i.e. to predict the flow in a turbulent open channel based on quantities measured at the wall. We show that it is possible to obtain very good flow predictions, outperforming traditional linear models, and we showcase the potential of transfer learning between friction Reynolds numbers of 180 and 550. These non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence. We also draw relevant connections between the development of AI and the achievement of the 17 Sustainable Development Goals of the United Nations.

Share This Event

bottom of page